Processus de branchement pour des populations structurées et estimateurs pour la division cellulaire

Aline Marguet Sous la direction de V. Bansaye et M. Hoffmann

27 novembre 2017

Décrire la dynamique d'une population de cellules

Modèle individu-centré où chaque cellule est caractérisée par un trait (âge, taille, nombre de parasites, ...).

- Comprendre le rôle de certaines caractéristiques dans la division cellulaire.
- Étudier le mécanisme de vieillissement cellulaire.
- Inférence statistique.

Étude du mécanisme de vieillissement cellulaire

Figure: Image : Soifer, Robert & Amir, 2016.

- Division asymétrique : répartition asymétrique du trait
- Phénomène de rajeunissement, plateau de mortalité

Échantillonnage uniforme

Loi des grands nombres

Estimation statistique dans des populations structurées

► Le trait (X^u_t)_{t≥0} de chaque individu u suit un processus de Markov de générateur infinitésimal G.

- ► Le trait (X^u_t)_{t≥0} de chaque individu u suit un processus de Markov de générateur infinitésimal G.
- Un individu *u* meurt au temps *t* au taux $B(X_t^u)$, i.e.

$$\mathbb{P}\left(\beta(u) > t | \alpha(u), \ (X^u_s, \alpha(u) \le s \le t)\right) = \exp\left(-\int_{\alpha(u)}^t B(X^u_s) ds\right),$$

où $\beta(u)$ désigne la durée de vie de u et $\alpha(u)$ son temps de naissance.

- ► Le trait (X^u_t)_{t≥0} de chaque individu u suit un processus de Markov de générateur infinitésimal G.
- Un individu *u* meurt au temps *t* au taux $B(X_t^u)$, i.e.

$$\mathbb{P}\left(\beta(u) > t | \alpha(u), \ (X^u_s, \alpha(u) \le s \le t)\right) = \exp\left(-\int_{\alpha(u)}^t B(X^u_s) ds\right),$$

où $\beta(u)$ désigne la durée de vie de u et $\alpha(u)$ son temps de naissance.

À sa mort, un individu de trait x est remplacé par A_u descendants. Les traits à la naissance sont choisis suivant une loi de probabilité dépendant de x et A_u.

- ► Le trait (X^u_t)_{t≥0} de chaque individu u suit un processus de Markov de générateur infinitésimal G.
- Un individu *u* meurt au temps *t* au taux $B(X_t^u)$, i.e.

$$\mathbb{P}\left(\beta(u) > t | \alpha(u), \ (X^u_s, \alpha(u) \le s \le t)\right) = \exp\left(-\int_{\alpha(u)}^t B(X^u_s) ds\right),$$

où $\beta(u)$ désigne la durée de vie de u et $\alpha(u)$ son temps de naissance.

- À sa mort, un individu de trait x est remplacé par A_u descendants. Les traits à la naissance sont choisis suivant une loi de probabilité dépendant de x et A_u.
- Conditionnellement au trait de leur ancêtre, les descendants évoluent ensuite indépendamment en suivant cette même dynamique.

Réalisation du processus structuré en taille

- croissance exponentielle à taux 1, • taille initiale : $X_0^{\emptyset} = 1$,
- temps final : T = 3, division à taux B(x) = x.

Description avec des processus à valeurs mesures

Fournier et Méléard 2004, Tran 2006, Bansaye et Tran 2011, etc...

$$Z_t = \sum_{u \in V_t} \delta_{X_t^u},$$

• V_t : individus en vie au temps t,

Description avec des processus à valeurs mesures

Fournier et Méléard 2004, Tran 2006, Bansaye et Tran 2011, etc...

$$Z_t = \sum_{u \in V_t} \delta_{X_t^u},$$

- V_t : individus en vie au temps t,
- $\blacktriangleright N_t = \#V_t.$

Description avec des processus à valeurs mesures

Fournier et Méléard 2004, Tran 2006, Bansaye et Tran 2011, etc...

$$Z_t = \sum_{u \in V_t} \delta_{X_t^u},$$

• V_t : individus en vie au temps t,

$$\blacktriangleright N_t = \#V_t.$$

Pour définir rigoureusement le processus comme unique solution forte d'une EDS (et pour éviter l'explosion de la population en temps fini), on considère deux types d'hypothèses:

- sur les évènements de division,
- sur la dynamique du trait.

Hypothèses sur les évènement de division

1. Il existe $b_1, b_2 \ge 0$ et $\gamma \ge 1$ tels que pour tout $x \in \mathcal{X}$,

 $B(x) \leq b_1 |x|^{\gamma} + b_2.$

Hypothèses sur les évènement de division

1. Il existe $b_1, b_2 \ge 0$ et $\gamma \ge 1$ tels que pour tout $x \in \mathcal{X}$,

 $B(x) \leq b_1 |x|^{\gamma} + b_2.$

2. Il existe $\ell : \mathbb{R}_+ \to \mathbb{R}_+$ telle que pour tout $x = (y, t) \in \mathcal{X}$ et $k \in \mathbb{N}$:

 $\sum_{i=1}^{\kappa} F_i^{(k)}(x) \le x \lor \ell(t), \text{ coordonnées par coordonnées},$

où $F_i^{(k)}(x)$ est le trait du *i*ème descendant parmi *k* d'un individu de trait x à la division.

Hypothèses sur les évènement de division

1. Il existe $b_1, b_2 \ge 0$ et $\gamma \ge 1$ tels que pour tout $x \in \mathcal{X}$,

 $B(x) \leq b_1 |x|^{\gamma} + b_2.$

2. Il existe $\ell : \mathbb{R}_+ \to \mathbb{R}_+$ telle que pour tout $x = (y, t) \in \mathcal{X}$ et $k \in \mathbb{N}$:

 $\sum_{i=1}^{\kappa} F_i^{(k)}(x) \le x \lor \ell(t), \text{ coordonnées par coordonnées},$

où $F_i^{(k)}(x)$ est le trait du *i*ème descendant parmi *k* d'un individu de trait x à la division.

3. Il existe $\overline{m} \ge 0$ tel que pour tout $x \in \mathcal{X}$,

$$m(x)=\sum_k kp_k(x)\leq \overline{m}.$$

Hypothèse sur la dynamique du trait

Il existe $c_1, c_2 \ge 0$ tels que pour tout $x \in \mathcal{X}$:

 $\mathcal{G}h_{\gamma}(x) \leq c_1h_{\gamma}(x) + c_2,$

avec γ défini précédemment et $h_{\gamma}(x) = |x|^{\gamma} = \left(\sum_{i=1}^{d} x_i\right)^{\gamma}$, pour tout $x \in \mathbb{R}^d_+$.

Hypothèse sur la dynamique du trait

Il existe $c_1, c_2 \ge 0$ tels que pour tout $x \in \mathcal{X}$:

 $\mathcal{G}h_{\gamma}(x) \leq c_1h_{\gamma}(x) + c_2,$

avec γ défini précédemment et $h_{\gamma}(x) = |x|^{\gamma} = \left(\sum_{i=1}^{d} x_i\right)^{\gamma}$, pour tout $x \in \mathbb{R}^d_+$.

En particulier, si on considère :

$$\mathcal{G}f(x) = r(x,t)f'(x) + \sigma^2(x,t)f''(x),$$

l'hypothèse précédente est vérifiée si :

$$r(x,t) \leq a_r x + b_r$$
 et $\sigma(x,t) \leq a_\sigma x + b_\sigma$.

Échantillonnage uniforme

Loi des grands nombres

Estimation statistique dans des populations structurées

"Uniform sampling in a structured branching population", Marguet 2017, accepté pour publication dans Bernoulli.

Trait d'un individu échantillonné uniformément au hasard

Le trait d'un individu échantillonné

Soit U(t) la variable aléatoire correspondant au trait d'un individu échantillonné uniformément dans la population au temps t. On considère

 $\left(X_s^{U(t)}\right)_{s\leq t}$.

Le trait d'un individu échantillonné

Soit U(t) la variable aléatoire correspondant au trait d'un individu échantillonné uniformément dans la population au temps t. On considère $\left(X_s^{U(t)}\right)_{s < t}$.

Ce processus est différent du processus de la cellule étiquetée.

Arbre de Galton-Watson biaisé Soit:

$$\widehat{p}_k = rac{kp_k}{m}, \quad k \ge 0, ext{ avec } m = \sum_{k \ge 0} kp_k.$$

Arbre de Galton-Watson biaisé Soit:

Arbre de Galton-Watson biaisé Soit:

Arbre de Galton-Watson biaisé Soit:

Arbre de Galton-Watson biaisé Soit:

Arbre de Galton-Watson biaisé Soit:

Arbre de Galton-Watson biaisé Soit:

Arbre de Galton-Watson biaisé Soit:

Lyons, Pemantle, Peres 1995.

Arbre de Galton-Watson biaisé Soit:

Épine et arbre biaisé par la taille

La suite de labels ($v_k, k \ge 0$) représente l'épine. Individu échantillonné

$$\mathbb{E}\left(H(\mathcal{A}_n,\mathcal{U}_n)N_n\right)=m^n\mathbb{E}\left(H(\widehat{\mathcal{A}}_n,\xi_n)\right).$$

avec :

- A_n : arbre de Galton-Watson à la génération n,
- \mathcal{U}_n : choix uniforme d'un individu à la génération n,
- N_n : nombre d'individus en vie à la génération n,
- $\widehat{\mathcal{A}}_n$: arbre de Galton-Watson biaisé à la génération n,
- ξ_n : épine à la génération n.
- 🔋 Lyons, Pemantle, Peres 1995.
Arbre biaisé par la taille

- Chauvin, Rouault (1988), Chauvin, Rouault, Wakolbinger (1991), Gorostiza, Roelly, Wakolbinger (1991),
- Lyons, Pemantle, Peres, (1995) : théorèmes limites
- Kurtz, Lyons, Pemantle, Peres (1997), Athreya (2000) : extensions multitypes
- Georgii et Baake (2003) : temps continu, trait discret,
- Hardy et Harris (2006) : généralisation de la formalisation de l'épine,
- Bansaye, Delmas, Marsalle, Tran (2011): modèle continu dans le cas neutre, loi des grands nombres,
- Cloez (2011): extension au cas non-neutre à l'aide de la théorie spectrale.

Semi-groupe associé au processus de l'épine On pose $m(x, s, t) = \mathbb{E}(N_t | Z_s = \delta_x).$

Semi-groupe associé au processus de l'épine

On pose $m(x, s, t) = \mathbb{E}(N_t | Z_s = \delta_x).$

1. Pour $f : \mathcal{X} \to \mathbb{R}$ et $x \in \mathcal{X}$, on considère :

$$P_{s,t}f(x) := \frac{R_{s,t}f(x)}{m(x,s,t)} = \frac{\mathbb{E}\left[\sum_{u \in V_t} f(X_t^u) \middle| Z_s = \delta_x\right]}{m(x,s,t)}, \quad \forall 0 \le s \le t.$$

- opérateurs conservatifs
- propriété de semi-groupe

Del Moral 2004, Bansaye 2013, Cloez 2017.

Semi-groupe associé au processus de l'épine

On pose $m(x, s, t) = \mathbb{E}(N_t | Z_s = \delta_x).$

1. Pour $f : \mathcal{X} \to \mathbb{R}$ et $x \in \mathcal{X}$, on considère :

$$P_{s,t}f(x) := \frac{R_{s,t}f(x)}{m(x,s,t)} = \frac{\mathbb{E}\left[\sum_{u \in V_t} f(X_t^u) \middle| Z_s = \delta_x\right]}{m(x,s,t)}, \quad \forall 0 \le s \le t.$$

- opérateurs conservatifs
- propriété de semi-groupe
- 2. On considère :

$$P_{r,s}^{(t)}f(x)=rac{R_{r,s}(\mathit{fm}(\cdot,s,t))}{\mathit{m}(x,r,t)}, \hspace{1em} ext{avec } 0\leq r\leq s\leq t.$$

- opérateurs conservatifs
- propriété de semi-groupe
- Del Moral 2004, Bansaye 2013, Cloez 2017.

Formule Many-to-One

Théorème

Pour tout t > 0, $x \in \mathcal{X}$, pour toute fonction mesurable positive $F : \mathbb{D}([0, t], \mathcal{X}) \to \mathbb{R}$ on a :

$$\mathbb{E}_{\delta_{\mathsf{x}_0}}\left[\sum_{u\in V_t} F\left(X^u_s, s\leq t\right)\right] = \mathbb{E}_{\delta_{\mathsf{x}_0}}(\mathsf{N}_t)\mathbb{E}_{\mathsf{x}_0}\left[F\left(Y^{(t)}_s, s\leq t\right)\right],$$

avec $\left(Y_{s}^{(t)}\right)_{s \leq t}$ processus de Markov inhomogène en temps de générateurs infinitésimaux $\left(\mathcal{A}_{s}^{(t)}\right)_{s \leq t}$ donnés par :

$$\mathcal{A}_{s}^{(t)}f(x) = \widehat{\mathcal{G}}_{s,t}f(x) + \widehat{\mathcal{B}}_{s,t}(x) \left(\int_{\mathcal{X}} \left(f(y) - f(x) \right) \widehat{\mathcal{P}}_{s,t}(x, dy) \right)$$

$$m(x, dy) = \sum_{k\geq 0} p_k(x) \sum_{j=1}^k P_i^{(k)}(x, dy), \quad m(x, s, t) = \mathbb{E}(N_t | Z_s = \delta_x).$$

$$m(x,dy) = \sum_{k\geq 0} p_k(x) \sum_{j=1}^k P_i^{(k)}(x,dy), \quad m(x,s,t) = \mathbb{E}(N_t | Z_s = \delta_x).$$

le processus saute à un taux accéléré :

$$\widehat{B}_{s,t}(x) = B(x) \int_{\mathcal{X}} \frac{m(y,s,t)}{m(x,s,t)} m(x,dy),$$

$$m(x, dy) = \sum_{k\geq 0} p_k(x) \sum_{j=1}^k P_j^{(k)}(x, dy), \quad m(x, s, t) = \mathbb{E}(N_t | Z_s = \delta_x).$$

le processus saute à un taux accéléré :

$$\widehat{B}_{s,t}(x) = B(x) \int_{\mathcal{X}} \frac{m(y,s,t)}{m(x,s,t)} m(x,dy),$$

le trait de l'unique descendant est choisi selon le noyau de probabilité :

$$\widehat{P}_{s,t}(x,dy) = \frac{m(y,s,t)}{m(x,s,t)}m(x,dy)\left(\int_{\mathcal{X}}\frac{m(y,s,t)}{m(x,s,t)}m(x,dy)\right)^{-1}.$$

$$m(x,dy) = \sum_{k\geq 0} p_k(x) \sum_{j=1}^k P_i^{(k)}(x,dy), \quad m(x,s,t) = \mathbb{E}(N_t | Z_s = \delta_x).$$

le processus saute à un taux accéléré :

$$\widehat{B}_{s,t}(x) = B(x) \int_{\mathcal{X}} \frac{m(y,s,t)}{m(x,s,t)} m(x,dy),$$

le trait de l'unique descendant est choisi selon le noyau de probabilité :

$$\widehat{P}_{s,t}(x,dy) = \frac{m(y,s,t)}{m(x,s,t)}m(x,dy)\left(\int_{\mathcal{X}}\frac{m(y,s,t)}{m(x,s,t)}m(x,dy)\right)^{-1}$$

la dynamique du trait est donnée par :

$$\widehat{\mathcal{G}}_{s,t}f(x) = \frac{\mathcal{G}\left(m(\cdot, s, t)f\right)(x) - f(x)\mathcal{G}\left(m(\cdot, s, t)\right)(x)}{m(x, s, t)}$$

Exemples

• Dans le cas neutre, $B \equiv b$:

$$\mathcal{A}f(x) = \mathcal{G}f(x) + 2b\int_{\mathcal{X}} (f(y) - f(x))\frac{m(x, dy)}{2}$$

Exemples

• Dans le cas neutre, $B \equiv b$:

$$\mathcal{A}f(x) = \mathcal{G}f(x) + 2b\int_{\mathcal{X}} (f(y) - f(x))\frac{m(x, dy)}{2}$$

Dans le cas d'une croissance des cellules exponentielle à taux a et d'une division binaire à taux B(x) = x, on a :

$$m(x,s,t)=1+\frac{x}{a}\left(e^{a(t-s)}-1\right),$$

et :

$$\mathcal{A}_{s}^{(t)}f(x) = axf'(x) + x\left(1 + \frac{1}{1 + \frac{x}{a}\left(e^{a(t-s)} - 1\right)}\right)\left(f\left(\frac{x}{2}\right) - f(x)\right).$$

Approximation en grande population Soit $\nu \in \mathcal{M}_{P}(\mathcal{X})$ vérifiant :

$$\mathbb{P}_{\nu}(N_t>0)>0.$$

On note U(t) une v.a. de loi uniforme sur V_t conditionnellement à la non-extinction. On pose

$$\nu_n := \sum_{i=1}^n \delta_{X_i}, \quad X_i \stackrel{\text{i.i.d.}}{\sim} \nu \quad \forall i = 1, \dots n.$$

Théorème

Sous les hypothèses précédentes +hypothèses techniques, on a en loi dans $\mathbb{D}([0, t], \mathcal{X})$:

$$X^{U(t),\nu_n}_{[0,t]} \xrightarrow[n \to +\infty]{} Y^{(t),\pi_t}_{[0,t]}, \text{ avec } \pi_t(dx) = \frac{m(x,0,t)\nu(dx)}{m(\nu,0,t)}.$$

Échantillonnage uniforme

Loi des grands nombres

Estimation statistique dans des populations structurées

Ergodicité du processus auxiliaire

1. Il existe une fonction $V:\mathcal{X}
ightarrow \mathbb{R}_+$ et c,d>0 tels que

 $\mathcal{A}_s^{(t)}V(x) \leq -cV(x) + d, \quad \forall x \in \mathcal{X}, 0 \leq s \leq t.$

2. Pour tout 0 < r < s, il existe $\alpha_{s-r} \in (0,1)$, $\nu_{r,s} \in \mathcal{M}_P(\mathcal{X})$ t.q.

 $\inf_{x\in\{x\in\mathcal{X}:V(x)\leq R\}}P_{r,s}^{(t)}(x,\cdot)\geq\alpha_{s-r}\nu_{r,s}(\cdot),\quad\forall t\geq s.$

avec pour un certain $R > \frac{2d}{c}$.

Ergodicité du processus auxiliaire

1. Il existe une fonction $V:\mathcal{X}
ightarrow \mathbb{R}_+$ et c,d>0 tels que

 $\mathcal{A}_s^{(t)}V(x) \leq -cV(x) + d, \quad \forall x \in \mathcal{X}, 0 \leq s \leq t.$

2. Pour tout 0 < r < s, il existe $\alpha_{s-r} \in (0,1)$, $\nu_{r,s} \in \mathcal{M}_P(\mathcal{X})$ t.q.

$$\inf_{x\in\{x\in\mathcal{X}:V(x)\leq R\}}P_{r,s}^{(t)}(x,\cdot)\geq\alpha_{s-r}\nu_{r,s}(\cdot),\quad\forall t\geq s.$$

avec pour un certain $R > \frac{2d}{c}$.

Proposition

Sous les hypothèses précédentes, il existe $\overline{c} > 0$ tel que pour tout $x, y \in \mathcal{X}$, pour toute fonction mesurable bornée $f : \mathcal{X} \to \mathbb{R}$ et tout $0 \le r \le s \le t$,

$$\left| P_{r,s}^{(t)} f(x) - P_{r,s}^{(t)} f(y) \right| \leq C e^{-\overline{c}(s-r)} d(x,y) \left\| f \right\|_{\infty},$$

où d est une distance sur \mathcal{X} , C est une constant positive.

Comportement en temps long

Théorème

Sous les hypothèses précédentes + hypothèses techniques, pour toute fonction mesurable bornée $f : \mathcal{X} \to \mathbb{R}$, et tout $x_0, x_1 \in \mathcal{X}$, on a :

$$\mathbb{E}_{\delta_{x_0}}\left[\left(\frac{\sum_{u\in V_t}\left(f\left(X_t^u\right)-\mathbb{E}_{x_1}\left[f(Y_t^{(t)})\right]\right)}{m(x_0,0,t)}\right)^2\right]\xrightarrow[t\to+\infty]{}0.$$

De plus, la vitesse de convergence est plus grande que :

$$v(t) = \exp\left(\min\left(\overline{c}, \frac{c(x_0) - \alpha_1}{2}\right)t\right).$$

Hypothèse

Pour tout $x \in \mathcal{X}$,

$$\sup_{t\geq 0}\mathbb{E}_{\delta_x}\left(\left(\frac{N_t}{m(x,0,t)}\right)^2\right)<\infty.$$

Corollaire

Sous les hypothèses précédentes + hypothèses techniques, pour toute fonction mesurable bornées $f : \mathcal{X} \to \mathbb{R}$, pour tout $x_0, x_1 \in \mathcal{X}$, on a :

$$\mathbb{E}_{\mathsf{x}_0}\left[\left(\frac{\sum_{u\in V_t} f\left(X_t^u\right)}{N_t} - \mathbb{E}_{\mathsf{x}_1}\left[f(Y_t^{(t)})\right]\right)^2\right] \xrightarrow[t \to +\infty]{} 0.$$

Hypothèse

Pour tout $x \in \mathcal{X}$,

$$\sup_{t\geq 0}\mathbb{E}_{\delta_x}\left(\left(\frac{N_t}{m(x,0,t)}\right)^2\right)<\infty.$$

Corollaire

Sous les hypothèses précédentes + hypothèses techniques, pour toute fonction mesurable bornées $f : \mathcal{X} \to \mathbb{R}$, pour tout $x_0, x_1 \in \mathcal{X}$, on a :

$$\mathbb{E}_{\mathsf{x}_0}\left[\left(\frac{\sum_{u\in V_t} f\left(X_t^u\right)}{N_t} - \mathbb{E}_{\mathsf{x}_1}\left[f(Y_t^{(t)})\right]\right)^2\right] \xrightarrow[t \to +\infty]{} 0.$$

Convergence pour les lignées ancestrales.

Hypothèse

Pour tout $x \in \mathcal{X}$,

$$\sup_{t\geq 0}\mathbb{E}_{\delta_x}\left(\left(\frac{N_t}{m(x,0,t)}\right)^2\right)<\infty.$$

Corollaire

Sous les hypothèses précédentes + hypothèses techniques, pour toute fonction mesurable bornées $f : \mathcal{X} \to \mathbb{R}$, pour tout $x_0, x_1 \in \mathcal{X}$, on a :

$$\mathbb{E}_{\mathsf{x}_0}\left[\left(\frac{\sum_{u\in V_t} f\left(X_t^u\right)}{N_t} - \mathbb{E}_{\mathsf{x}_1}\left[f(Y_t^{(t)})\right]\right)^2\right] \xrightarrow[t \to +\infty]{} 0.$$

- Convergence pour les lignées ancestrales.
- Hypothèses vérifiées pour de la croissance-fragmentation inhomogène.

Échantillonnage uniforme

Loi des grands nombres

Estimation statistique dans des populations structurées Estimation non-paramétrique Estimation paramétrique du taux de division

Travail en collaboration avec Marc Hoffmann.

Temps généalogique

Thèse A. Olivier 2015.

► Le trait (φ_x(t))_{t≥0} de chaque individu évolue suivant une diffusion d'équation :

 $d\phi_x(t) = r(\phi_x(t))dt + \sigma(\phi_x(t))dW_t, \quad \phi_x(0) = x,$

où $r, \sigma : \mathbb{R} \to \mathbb{R}$ sont des fonctions mesurables et $(W_t)_{t \ge 0}$ est un mouvement brownien standard.

► Le trait (φ_x(t))_{t≥0} de chaque individu évolue suivant une diffusion d'équation :

 $d\phi_x(t) = r(\phi_x(t))dt + \sigma(\phi_x(t))dW_t, \quad \phi_x(0) = x,$

où $r, \sigma : \mathbb{R} \to \mathbb{R}$ sont des fonctions mesurables et $(W_t)_{t \ge 0}$ est un mouvement brownien standard.

• Chaque individu se divise au temps t à un taux $B(\phi_x(t))$,

► Le trait (φ_x(t))_{t≥0} de chaque individu évolue suivant une diffusion d'équation :

 $d\phi_x(t) = r(\phi_x(t))dt + \sigma(\phi_x(t))dW_t, \quad \phi_x(0) = x,$

où $r, \sigma : \mathbb{R} \to \mathbb{R}$ sont des fonctions mesurables et $(W_t)_{t \ge 0}$ est un mouvement brownien standard.

- Chaque individu se divise au temps t à un taux $B(\phi_x(t))$,
- À sa mort, un individu de trait x est remplacé par 2 descendants de traits à la naissance θx et (1 − θ)x, où θ ∈ [0, 1] est une v.a. de densité associée κ(θ) symétrique.

► Le trait (\$\phi_x(t)\$)\$_t≥0\$ de chaque individu évolue suivant une diffusion d'équation :

 $d\phi_x(t) = r(\phi_x(t))dt + \sigma(\phi_x(t))dW_t, \quad \phi_x(0) = x,$

où $r, \sigma : \mathbb{R} \to \mathbb{R}$ sont des fonctions mesurables et $(W_t)_{t \ge 0}$ est un mouvement brownien standard.

- Chaque individu se divise au temps t à un taux $B(\phi_x(t))$,
- À sa mort, un individu de trait x est remplacé par 2 descendants de traits à la naissance θx et (1 − θ)x, où θ ∈ [0, 1] est une v.a. de densité associée κ(θ) symétrique.
- Conditionnellement au trait de leur ancêtre, les descendants évoluent indépendamment les uns des autres.

Chaîne de Markov bifurcante

On considère les notations de Ulam-Harris-Neveu, pour $n, m \ge 0$, on note :

$$\mathbb{T} = \bigcup_{m \in \mathbb{N}} \{0, 1\}^m, \quad \mathbb{T}_n = \bigcup_{m=0}^n \{0, 1\}^m, \quad \mathbb{T}_n^{\star} = \mathbb{T}_n \setminus \{\emptyset\}.$$

On note X_u le trait à la naissance d'un individu $u \in \mathbb{T}$. On suppose que l'on dispose des observations

$$\mathbb{X}^n = (X_u)_{u \in \mathbb{T}_n}.$$

Le processus $(X_u, u \in \mathbb{T})$ est alors une chaîne de Markov bifurcante de noyau de transition \mathcal{P} de \mathbb{R} dans $\mathbb{R} \times \mathbb{R}$ tel que :

$$\mathbb{E}\big[\prod_{u\in\mathbb{G}_m}\psi_u(X_u,X_{u0},X_{u1})\,\big|\,\mathcal{F}_m\big]=\prod_{u\in\mathbb{G}_m}\mathcal{P}\psi_u(X_u),$$

pour tout $m \ge 0$.

Exemple de trajectoire

Exemple de trajectoire

Processus de la cellule étiqueté

Soit Y la chaîne de Markov correspondant au trait de la cellule étiquetée.

Processus de la cellule étiqueté

Soit Y la chaîne de Markov correspondant au trait de la cellule étiquetée.

La transition de Y est donnée par $\mathcal{Q} = (\mathcal{P}_1 + \mathcal{P}_2)/2$, avec

$$\mathcal{P}_1(x, dy) = \int_{\mathbb{R}} \mathcal{P}(x, dydy_2) = \mathcal{P}_2(x, dy) = \int_{\mathbb{R}} \mathcal{P}(x, dy_1dy),$$

car κ est symétrique.

Processus de la cellule étiqueté

Soit Y la chaîne de Markov correspondant au trait de la cellule étiquetée.

La transition de Y est donnée par $Q = P_1$, avec

$$\mathcal{P}_1(x, dy) = \int_{\mathbb{R}} \mathcal{P}(x, dydy_2) = \mathcal{P}_2(x, dy) = \int_{\mathbb{R}} \mathcal{P}(x, dy_1dy),$$

car κ est symétrique.

Objectifs

À partir de $(X_u, u \in \mathbb{T}_n)$,

- estimer $\nu(dx)$ (mesure invariante),
- estimer $\mathcal{Q}(dx)$,
- ▶ estimer *B*.

Comportement asymptotique de la mesure empirique

$$\mathcal{M}_n(\psi) = \frac{1}{|\mathbb{T}_n^{\star}|} \sum_{u \in \mathbb{T}_n^{\star}} \psi(X_{u^-}, X_u).$$

Comportement asymptotique de la mesure empirique

$$\mathcal{M}_n(\psi) = \frac{1}{|\mathbb{T}_n^{\star}|} \sum_{u \in \mathbb{T}_n^{\star}} \psi(X_{u^-}, X_u).$$

Théorème

Soit $\mu \in \mathcal{M}_{\mathcal{P}}(\mathbb{R})$ telle que $\mu(V^2) < \infty$ et $\psi : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ bornée telle que ψ_{\star} soit à support compact. Sous des hypothèses portant sur l'ergodicité de Y,

$\mathbb{E}_{\mu}\left[\left(\mathcal{M}_{n}(\psi)-\nu(\mathcal{Q}\psi)\right)^{2}\right] \lesssim |\mathbb{T}_{n}|^{-1}C(\psi), \quad \forall n \in \mathbb{N},$

où \lesssim signifie à une constante près dépendant de ${\cal Q}$ et ${
m supp}(\psi_{\star})$ et

$$C(\psi) = \left|\psi^{2}\right|_{\mu+\nu} + \left|\psi^{\star}\psi\right|_{\mu} + \left(1 + \mu(V^{2})^{1/2}\right)\left|\psi_{\star}\right|_{1}\left|\psi\right|_{\nu}.$$

Comportement asymptotique de la mesure empirique

$$\mathcal{M}_n(\psi) = \frac{1}{|\mathbb{T}_n^{\star}|} \sum_{u \in \mathbb{T}_n^{\star}} \psi(X_{u^-}, X_u).$$

Théorème

Soit $\mu \in \mathcal{M}_{\mathcal{P}}(\mathbb{R})$ telle que $\mu(V^2) < \infty$ et $\psi : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ bornée telle que ψ_{\star} soit à support compact. Sous des hypothèses portant sur l'ergodicité de Y,

$\mathbb{E}_{\mu}\left[\left(\mathcal{M}_{n}(\psi)-\nu(\mathcal{Q}\psi)\right)^{2}\right] \lesssim |\mathbb{T}_{n}|^{-1}C(\psi), \quad \forall n \in \mathbb{N},$

où \lesssim signifie à une constante près dépendant de ${\cal Q}$ et ${
m supp}(\psi_{\star})$ et

$$C(\psi) = |\psi^{2}|_{\mu+\nu} + |\psi^{*}\psi|_{\mu} + (1 + \mu(V^{2})^{1/2}) |\psi_{*}|_{1} |\psi|_{\nu}.$$

$$|\psi|_{\mu} = \int_{\mathbb{R}\times\mathbb{R}} |\psi(x,y)|\mu(dx)dy + |\psi_{*}|_{1} \wedge |\psi|_{\wedge 1}, \quad \psi^{*}(x) = \sup_{y \in \mathbb{R}} |\psi(x,y)|$$

$$|\psi|_{\wedge 1} = \int_{\mathcal{X}\times\mathcal{X}} |\psi(x,y)|dxdy \wedge |\psi_{*}(y)|_{1}, \quad \psi_{*}(y) = \sup_{x \in \mathbb{R}} |\psi(x,y)|.$$

$$33/48$$

Échantillonnage uniforme

Loi des grands nombres

Estimation statistique dans des populations structurées Estimation non-paramétrique

Estimation paramétrique du taux de division
Noyau

Définition

Une fonction $G : \mathbb{R} \to \mathbb{R}$ est un noyau d'ordre k si elle satisfait $\int_{\mathbb{R}} x^{l} G(x) dx = \mathbf{1}_{\{l=0\}}$ pour tout l = 0, ..., k. Exemples :

- $x
 ightarrow \mathbf{1}_{\{x \leq 1\}}$ est un noyau d'ordre 0,
- $x
 ightarrow 1/\sqrt{2\pi}e^{-x^2/2}$ est un noyau d'ordre 1,
- on peut construire des noyaux de tout ordre à l'aide des polynômes de Legendre.

Estimateur à noyau de la mesure invariante

Soit G un noyau d'ordre k et h > 0 un paramètre de lissage. On pose

$$G_h(y) = h^{-1}G(h^{-1}y), \quad \forall y \in \mathbb{R}.$$

Comme $\mathcal{M}_n(\varphi)$ converge vers $\nu(\varphi)$ (pour $\varphi: \mathbb{R} \to \mathbb{R}$), on a

$$\mathcal{M}_n(G_h(\cdot - x_0)) \xrightarrow[n \to \infty]{} \int_{\mathbb{R}} G_h(x - x_0) \nu(x) dx.$$

Estimateur à noyau de la mesure invariante

Soit G un noyau d'ordre k et h > 0 un paramètre de lissage. On pose

$$G_h(y) = h^{-1}G(h^{-1}y), \quad \forall y \in \mathbb{R}.$$

Comme $\mathcal{M}_n(\varphi)$ converge vers $\nu(\varphi)$ (pour $\varphi: \mathbb{R} \to \mathbb{R}$), on a

$$\mathcal{M}_n(G_h(\cdot-x_0)) \xrightarrow[n\to\infty]{} \int_{\mathbb{R}} G_h(x-x_0)\nu(x)dx.$$

Un estimateur de $\nu(x_0)$, pour $x_0 \in \mathbb{R}$ est donc donné par

 $\widehat{\nu}_n(x_0) = \mathcal{M}_n(G_h(\cdot - x_0)).$

Estimateur à noyau de la densité

De la même façon, on considère G un noyau d'ordre k et $h_1, h_2 > 0$ deux paramètres de lissage. On pose

 $G_{h_1,h_2}^{\otimes 2}(x,y) = h_1^{-1}h_2^{-1}G(h_1^{-1}x)G(h_2^{-1}y), \quad \forall x,y \in \mathbb{R}.$

On a alors la convergence suivante :

$$\mathcal{M}_n(G_{h_1,h_2}^{\otimes 2}(\cdot - x_0, \cdot - y_0))$$
$$\xrightarrow[n \to \infty]{} \int_{\mathbb{R} \times \mathbb{R}} G_{h_1,h_2}^{\otimes 2}(x - x_0, y - y_0)q(x, y)\nu(x)dydx.$$

Estimateur à noyau de la densité

De la même façon, on considère G un noyau d'ordre k et $h_1, h_2 > 0$ deux paramètres de lissage. On pose

 $G_{h_1,h_2}^{\otimes 2}(x,y) = h_1^{-1}h_2^{-1}G(h_1^{-1}x)G(h_2^{-1}y), \quad \forall x,y \in \mathbb{R}.$

On a alors la convergence suivante :

$$\mathcal{M}_n(G_{h_1,h_2}^{\otimes 2}(\cdot - x_0, \cdot - y_0))$$

$$\xrightarrow[n \to \infty]{} \int_{\mathbb{R} \times \mathbb{R}} G_{h_1,h_2}^{\otimes 2}(x - x_0, y - y_0)q(x, y)\nu(x)dydx.$$

Un estimateur de la densité $q(x_0, y_0)$, pour $x_0, y_0 \in \mathbb{R}$ est alors donné par

$$\widehat{q}_n(x_0, y_0) = \frac{\mathcal{M}_n(\mathcal{G}_{h_1, h_2}^{\otimes 2}(\cdot - x_0, \cdot - y_0))}{\mathcal{M}_n(\mathcal{G}_h(\cdot - x_0)) \vee \varpi}.$$

Convergence des estimateurs

Soit $\alpha, \beta > 0$ et G un noyau d'ordre $k > \max(\alpha, \beta)$. On pose

$$h = |\mathbb{T}_n|^{\frac{-1}{2\beta+1}}, \quad h_1 = |\mathbb{T}_n|^{\frac{-s(\alpha,\beta)}{(\alpha\wedge\beta)(2s(\alpha,\beta)+1)}}, \quad h_2 = |\mathbb{T}_n|^{\frac{-s(\alpha,\beta)}{\beta(2s(\alpha,\beta)+1)}}, \quad \varpi_n \to 0.$$

Théorème

Sous des hypothèses assurant l'ergodicité de la chaîne Y, on a

$$\begin{split} & \left(\mathbb{E}\big[\big(\widehat{\nu}_n(x_0)-\nu(x_0)\big)^2\big]\right)^{1/2} \lesssim |\mathbb{T}_n|^{-\beta/(2\beta+1)},\\ & \left(\mathbb{E}\big[\big(\widehat{q}_n(x_0,y_0)-q(x_0,y_0)\big)^2\big]\right)^{1/2} \lesssim \varpi_n^{-1}|\mathbb{T}_n|^{-\mathfrak{s}(\alpha,\beta)/(2\mathfrak{s}(\alpha,\beta)+1)}, \end{split}$$

avec $s(\alpha, \beta)^{-1} = (\alpha \land \beta)^{-1} + \beta^{-1}$, uniformément en \mathcal{Q} pour \mathcal{Q} dans une certaine classe de régularité de Hölder dépendant de α et β . Échantillonnage uniforme

Loi des grands nombres

Estimation statistique dans des populations structurées Estimation non-paramétrique Estimation paramétrique du taux de division

Estimation du taux de division

La dépendance en B de la transition est complexe mais explicite :

$$q(x,y) = \int_0^1 \frac{\kappa(z)}{z} B(y/z) \sigma(y/z)^{-2} \mathbb{E} \Big[\int_0^\infty e^{-\int_0^t B(\phi_x(s)) ds} dL_t^{y/z}(\phi_x) \Big] dz,$$

avec $L_t^y(\phi_x)$ le temps local au temps t au point y de $(\phi_x(t), t \ge 0)$.

Estimation du taux de division

La dépendance en B de la transition est complexe mais explicite :

$$q(x,y) = \int_0^1 \frac{\kappa(z)}{z} B(y/z) \sigma(y/z)^{-2} \mathbb{E} \Big[\int_0^\infty e^{-\int_0^t B(\phi_x(s)) ds} dL_t^{y/z}(\phi_x) \Big] dz,$$

avec $L_t^y(\phi_x)$ le temps local au temps t au point y de $(\phi_x(t), t \ge 0)$.

 \rightarrow Contraste de vraisemblance dans un cadre paramétrique avec (r,σ,κ) connus.

On suppose que le taux de division B appartient à une classe

 $\mathcal{B} = \big\{ B : [0, L] \to \mathbb{R}, B(x) = B_0(\vartheta, x), x \in [0, L], \vartheta \in \Theta \big\},\$

où $x \mapsto B_0(x, \vartheta)$ est connu à un paramètre $\vartheta \in \Theta$ près, et $\Theta \subset \mathbb{R}^d$ est compact.

But

Estimer ϑ à partir de $(X_u, u \in \mathbb{T}_n)$.

Contraste de vraisemblance

Un contraste de vraisemblance est donné par :

$$\mathcal{L}_n(\vartheta, (X_u, u \in \mathbb{T}_n)) = \prod_{u \in \mathbb{T}_n^*} q_{\vartheta}(X_{u^-}, X_u),$$

où X_{u^-} correspond au trait de l'ancêtre de u. On considère alors l'estimateur de ϑ donné par :

$$\widehat{\vartheta}_{n} \in \operatorname*{argmax}_{artheta \in \Theta} \left\{ \dfrac{1}{\mathbb{T}_{n}^{\star}} \sum_{u \in \mathbb{T}_{n}^{\star}} \log\left(q_{artheta}\left(X_{u^{-}}, X_{u}
ight)
ight)
ight\}.$$

Consistance

Théorème

Sous des hypothèses de régularité du taux de division, $\hat{\vartheta}_n$ converge en probabilité vers ϑ lorsque *n* tend vers l'infini.

Normalité asymptotique

On définit $\Psi(\vartheta)$ la matrice d'information de Fisher dont les coefficients sont donnés pour tout $1 \le i, j \le d$ par :

$$\Psi(artheta)_{i,j} =
u_artheta \mathcal{Q}(artheta) \left(rac{\partial_{artheta_i} q_artheta \partial_{artheta_j} q_artheta}{q_artheta^2}
ight).$$

Théorème

Sous des hypothèses de régularité et si $\Psi(\vartheta)$ est inversible, pour tout ϑ dans l'intérieur de Θ , on a:

$$\mathbb{T}_n^{1/2}\left(\widehat{\vartheta}_n - \vartheta\right) \to \mathcal{N}\left(0, \Psi(\vartheta)^{-1}\right),$$

en loi lorsque *n* tend vers l'infini, où $\mathcal{N}(0, \Psi(\vartheta)^{-1})$ désigne la loi normale *d*-dimensionnelle de moyenne 0 et de matrice de covariance l'inverse de la matrice de Fisher $\psi(\vartheta)$.

Simulations

 $\vartheta=2$ 1.0 0.8 Trait at birth 0.0 7 0.2 0.0 -0.0 0.2 0.4 0.6 0.8 1.0 Trait at birth of the ancestor

Figure: Données simulées avec $B(x, \vartheta) \equiv \vartheta$, $\phi_x(t) = W_t$.

Pour chaque ϑ dans une grille fixée,

Pour chaque ϑ dans une grille fixée,

 \blacktriangleright simulation de données avec le paramètre ϑ ,

Pour chaque ϑ dans une grille fixée,

- simulation de données avec le paramètre ϑ ,
- ▶ estimation non-paramétrique de q_{ϑ} à partir de ces données sur une grille de taille 200 × 200,

Pour chaque ϑ dans une grille fixée,

- simulation de données avec le paramètre ϑ ,
- ▶ estimation non-paramétrique de q_{ϑ} à partir de ces données sur une grille de taille 200 × 200,

Figure: Densité de la transition pour $B(x, \vartheta) \equiv \vartheta$.

▶ simulation 300 jeux de données de taille $2^{15} - 1 = 32765$ avec le paramètre ϑ_0 ,

- Simulation 300 jeux de données de taille 2¹⁵ − 1 = 32765 avec le paramètre ϑ₀,
- ▶ pour chaque jeu de données, calcul du contraste de vraisemblance pour les différentes valeurs de ϑ à partir des densités estimées.

- Simulation 300 jeux de données de taille 2¹⁵ − 1 = 32765 avec le paramètre ϑ₀,
- ▶ pour chaque jeu de données, calcul du contraste de vraisemblance pour les différentes valeurs de ϑ à partir des densités estimées.

- ▶ simulation 300 jeux de données de taille $2^{15} 1 = 32765$ avec le paramètre ϑ_0 ,
- ▶ pour chaque jeu de données, calcul du contraste de vraisemblance pour les différentes valeurs de ϑ à partir des densités estimées.

Merci pour votre attention !