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Abstract: In previous work, we have developed an autoregressive Mixed-Effects model of the
evolution of the kinetic gene expression parameters along cell generations, and an identification
method simultaneously exploiting single-cell gene expression profiles and known parental
relationships among cells (lineage tree data). Here, we extend our modelling and identification
approach to explicitly account for stochasticity of promoter activation, and demonstrate via
simulation the performance of the method and the improvement relative to the original approach
where this source of noise is not accounted for.
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1. INTRODUCTION

Modern experimental technologies for the monitoring of
single-cell dynamics have unveiled variability of gene ex-
pression across cells of a genetically identical popula-
tion (Elowitz, 2002). Quantitative characterization of gene
expression response variability has become an important
challenge for the understanding of cellular mechanisms
that reduce noise or exploit stochasticity for survival and
diversification (Raj and van Oudenaarden, 2008). Among
the sources of gene expression noise is the variability of
cellular physiology across cells or in the lifetime of every
individual cell. Referred to as extrinsic noise (Swain et al.,
2002), this is often believed to dominate the so-called
intrinsic noise, which instead refers to randomness of the
transcription and translation events that determine the ex-
pression of a gene (Llamosi et al., 2016). Most approaches
to the modelling and identification of gene expression noise
from single-cell data assume that individual cells are sta-
tistically independent of each other (Munsky et al., 2009;
Zechner et al., 2014). However, models of cell division in
growing populations as well as experimental results show
that correlations may play an important role in shaping
variability through the population (Thomas, 2017; Ferraro
et al., 2016; Taheri-Araghi et al., 2015).

Focusing on cell-to-cell variability, extrinsic noise can be
described in terms of individual kinetic gene expression
parameters taking random values from a common popula-
tion distribution, i.e. by a Mixed-Effects (ME) modelling
framework (Llamosi et al., 2016). To further account for
correlation among individuals, in Marguet et al. (2019),
we proposed an extension of ME modelling and identi-
fication called ARME. Here, inheritance and variability
of individual cell parameters at division is described via
an Auto-Regressive process (whence the prefix AR), and
known parental relationships among the observed cells
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are explicitly taken into account. Simulations as well as
application to real data showed that ARME improves
reconstruction of statistical parameter variability across
cells, and outperforms state-of-the-art indirect methods
for the reconstruction of correlations among individuals.
Yet, variability of kinetic parameters along the lifetime of
a cell is not taken into account.

In this paper, we further develop ARME so as to cope
with extrinsic gene expression variability within individual
cells. We focus on the key phenomenon of random single-
cell promoter activation in response to a common environ-
mental stimulus (Suter et al., 2011). Taken cell state and
parameter inheritance into account, the model we propose
is a linear continuous-time stochastic dynamical model
defined over the lineage tree, with jumps at cell division.
Based on this, we pose identification of the inheritance
kernel and other population parameters as a maximum
likelihood problem, which is then reconducted to a filtering
problem over trees (Chou et al., 1994; Desbouvries et al.,
2006; Durand et al., 2004). A numerical approach for the
solution of this problem is developed as a novel extension
of the randomized approach proposed in Marguet et al.
(2019). By means of simulations in a variety of scenarios,
we show that the method provides unbiased estimates of
the population parameters sought, and also demonstrate
how failing to account for promoter response noise yields
biased estimates of the same parameters.

The paper unfolds as follows. In Sec. 2 we review ARME
modelling and identification from Marguet et al. (2019).
In Sec. 3 we develop the model and identification method
for stochastic promoter response. Simulation results are
discussed in Sec. 4, and conclusions are drawn in Sec. 5.

2. ARME MODELLING AND IDENTIFICATION OF
GENE EXPRESSION DYNAMICS

In this section we review the modelling framework and
the identification approach that we developed in Marguet
et al. (2019).



2.1 Modelling gene expression kinetics over lineage trees

Let V be a set of indices for individual cells. The expression
dynamics of a gene of interest in a cell v ∈ V is described
by the model{

ṁv(t) = kvmu(t)− gvmmv(t),
ṗv(t) = kvpm

v(t)− gvppv(t),
t ≥ tv0, (1)

where t is a universal time reference, and tv0 is the initial
time of cell v. In this model, u(t) quantifies the strength
of promoter activation in response of a common environ-
mental stimulus s(t), mv(t) the intracellular concentra-
tion of mRNA molecules transcribed at a rate kvm, pv(t)
the concentration of protein molecules translated from
mRNAs at a rate kvp . Rates gvm and gvp incorporate molec-
ular degradation and growth-related dilution for mRNAs
and proteins. Let s(t) take value 1 when the stimulus is
present and 0 othewise. In Marguet et al. (2019), similar
to earlier work (Munsky et al., 2009; Llamosi et al., 2016),
we considered scenarios where s(t) is known (as in control
experiments) and u(t) = R

(
s(t)

)
, with R a known re-

sponse functional (in the simplest case, u(t) = s(t)). Since
u(t) is determined by the knowledge of s and R, for the
rest of this section we may neglect s(t) and simply refer to
u(t) (this will not be the case for the stochastic model of
Sec. 3.1). Note that u(t) is assumed identical over all cells
v ∈ V . Due to its deterministic nature, the model is best
suited to genes with limited expression noise.

Let ψv = (kvm, g
v
m, k

v
p , g

v
p) denote the d-dimensional vector

of individual cell parameters (d = 4). Variability of gene
expression across cells is captured in part by different val-
ues of ψv across cells V . By standard ME modelling (Llam-
osi et al., 2016), {ψv}v∈V are described as identically
distributed independent (i.i.d.) random variables with a
common population distribution. In our ARME framework
instead, we introduce correlation among cells in terms
of stochastic inheritance of parameters from mother to
daughter cells. Let us see V as nodes of a graph and let
W ⊆ V × V be a tree. Biologically, (v−, v) ∈ W denotes
cells in a parental relationship, with v− the direct ancestor
(mother) of v. We assume that the ψv obey the AR model

ϕv = Aϕv
−

+ (I −A)b+ ηv, ψv = exp(ϕv), (2)

where A ∈ Rd×d, b ∈ Rd, I denotes the identity matrix,
and the ηv are size-d i.i.d. Gaussian random vectors,

ηv ∼ N (0,Ω), also independent of ϕv
−

. The component-
wise exponential transformation makes the entries of ψv

log-normally distributed, thus nonnegative. We further
assume that A is strictly stable and that the process
ϕv is in a weakly stationary regime, in the sense that
one can define a common population mean E[ϕv] = µ
and covariance matrix Var(ϕv) = Σ. Then µ = b and
Σ obeys Σ = AΣAT + Ω. For different values of A,
this model expresses the extent to which the offspring
parameters ϕv are determined by (inherited from) the

parent parameters ϕv
−

. Indeed Cov(ϕv, ϕv
−

) = AΣ, i.e. A

is the (matrix) correlation coefficient between ϕv and ϕv
−

.
In particular, for A diagonal with Ai,i ∈ [0, 1), i = 0, . . . , d,
inheritance applies separately to every parameter, the
closer the Ai,i to 0 (resp. 1), the smaller (resp. larger) the
degree of inheritance. For A = 0 (statistically independent
individuals), the model reduces to standard ME, with
common population distribution ϕv = logψv ∼ N (b,Ω).

Fig. 1. Cell division and gene expression dynamics. Green:
Stimuli; Red: Stochastic extension of the model.

Depending on the organism, one or several offspring v may
correspond to the same mother cell v−, corresponding to
different graphsW . In Marguet et al. (2019), we considered
bacterial mytosis, i.e. a mother cell splits into two cells at
a common time tv0, and yeast budding, i.e. several cells
v generated at different times tv0 can be daughters of the
same mother v−. We assumed that mRNA and protein
molecule concentrations are carried over from mother to
daughter cells at division. That is, denoting the state
vector of cell v as xv(t) = [mv(t), pv(t)]T ,

xv(tv0) = xv
−

(tv0). (3)

In the sequel, for simplicity, we focus on the case of mytosis
and assume that the initial state xv(tv0) for the root v = 0
of W is given. Generalizations are immediate (Marguet
et al., 2019). The model is illustrated in Fig. 1.

2.2 Identification using lineage tree data

In Marguet et al. (2019), we further addressed the problem
of identifying the model of the previous section from single-
cell gene expression data, with the additional knowledge
of the parental relationships W . Let tvj , with j = 1, . . . , nv,
be nv measurement times for cell v ∈ V . We assume that
single-cell gene expression measurements obey the model

yvj = Cxv(tvj ) + hεvj , j = 1, . . . , nv, (4)

where xv(tvj ) is the cell state evolving in accordance with
dynamics (1), terms εvj are zero-mean unit-variance Gaus-
sian random variables independent across j and v, and C
is known. We restrict attention to the case where C = [0, 1]
(the observed variable is the protein concentration p), so
that εvj is scalar, and h > 0 is an unknown constant that
defines the measurement error strength.

Let θ = (A, b,Ω, h), Y v = {yvj : j = 1, . . . , nv} and
Y = {Y v : v ∈ V }. The identification problem is to
estimate θ given Y and W . The solution developed rests
on maximum likelihood, that is, we seek the estimator

θ̂(Y,W ) = arg max
θ∈Θ

L(θ|Y,W )

(assuming the maximum exists), where L(θ|Y,W ) is the
log-likelihood log p(Y |W, θ) and Θ is a suitable parameter
space. In a standard ME context, where W = ∅ (parental
relationships are not considered) and A = 0 (statisti-
cally independent individuals), an effective numerical ap-
proach to estimate (b,Ω, h) is the randomized optimization
method SAEM (Stochastic Approximation of Expectation
Maximization (Delyon et al., 1999)). In Marguet et al.
(2019), we extended SAEM into our ARME identification
method, which exploits the additional knowledge of W and



estimates A as well. We now briefly describe SAEM and
its extension into ARME identification.

Let ϕ = {ϕv : v ∈ V } be all individual cell parameters.
Both methods generate a (probabilistically convergent)

sequence of estimates θ̂k by the following iteration on k:

• S-step: simulate ϕk+1 according to p(ϕ|Y,W, θ̂k);
• E-step: compute

Qk+1(θ) = Qk(θ) +λk(log(p(Y, ϕk+1|W, θ))−Qk(θ));

• M-step: update θ̂k+1 = arg maxθ Qk+1(θ),

where λk > 0 is a suitable annealing sequence. The critical
step is the S-step, where a sample value ϕk+1 of ϕ needs to

be randomly generated in accordance with p(ϕ|Y,W, θ̂k),
the conditional distribution of ϕ given the current estimate

θ̂k of θ. The S-step can be implemented via Metropolis-

Hastings. Writing θ in place of θ̂k for simplicity, at every
iteration k, this amounts to simulate a Markov chain ϕj ,
using a proposal distribution q(ϕ̃j+1, ϕj), and accepting
ϕ̃j+1 as the new state of the chain with probability

min

{
1,
p(ϕ̃j+1|Y,W, θ)
p(ϕj |Y,W, θ)

q(ϕ̃j+1, ϕj)

q(ϕj , ϕ̃j+1)

}
.

For SAEM, in view of W = ∅ and statistical independence
of the individuals, the problem can be separated out
into |V | simpler simulation problems, one per individual.
Mathematically, this follows from the fact that term

p(ϕ|Y,W, θ) ∝ p(Y |ϕ,W, h)p(ϕ|W, θ) (5)

can be factorized as
∏
v∈V p(Y

v|ϕv, h)p(ϕv|θ). In ARME
instead, Metropolis-Hastings needs to be performed at
once on the whole tree W . Indeed p(ϕ|W, θ) is determined
by the autoregression (2) and it cannot be factored out
into individual cell terms. This largely complicates the
choice of the proposal distribution q for achieving suitable
acceptance rates and practical convergence. In Marguet
et al. (2019), an effective sampling strategy was developed
that is based on a hierarchy of proposal distributions incor-
porating whole-tree, generation, and individual-cell level
sampling. In addition to the convergence of the method,
we showed via numerical simulation that estimation of A
in particular, and of all entries of θ in general, is signif-
icantly improved relative to a state-of-the-art competing
approach. The reader is referred to the original paper for
more details, numerical performance analysis, implemen-
tation code and application to real data.

Importantly, in view of the model of Sec. 2.1, the eval-
uation of the likelihood p(Y |ϕ,W, h) in (5) is simple.
For the putative cell parameters ϕ and any v ∈ V , let
Xv
ϕ = {xvϕ(tvj ) : j = 1, . . . , nv} be the values of the state

of cell v at the measurement times tvj . For all v, Xv
ϕ is

determined by ϕ, since it follows from the solution of the
ODE system (1) along the branches of W , using (3) for
parent-offspring transitions. Then, in view of (4),

p(Y |ϕ,W, h) =
∏
v∈V

p(Y v|Xv
ϕ, h)

=
∏
v∈V

nv∏
j=0

fh
(
yvj − Cxvϕ(tvj )

) (6)

where fh(·) is the density function of N (0, h). As we will
see, the problem becomes more complicated in presence of
noisy dynamics.

3. MODELLING AND IDENTIFICATION IN
PRESENCE OF PROMOTER NOISE

Model (1) describes gene expression in terms of determinis-
tic dynamics entirely defined by the individual cell param-
eters ψv. Yet, in general, single-cell response is notoriously
noisy (Elowitz, 2002). Among the various sources of noise,
in this work we focus on the variability of promoter acti-
vation in response to an external stimulus. Our objective
is to investigate the importance to account for this source
of variability in the identification of the gene expression
models from the expression measurements Y and lineage
data W . In particular, we are interested in the accuracy of
reconstruction of the parameter inheritance dynamics (2).
To address this question, a simple extension of model (1)
is proposed in Sec. 3.1, and a corresponding extension of
the ARME identification approach is discussed in Sec. 3.2.
Performance comparison between this extended identifi-
cation method and the original method of Sec. 2 will be
developed in Sec. 4.

3.1 Stochastic promoter activation model

For a given cell v, let us interpret u(t) in (1) as the result of
a random response to the stimulus s(t). We model this as
follows. For i ∈ {0, 1}, let µi ∈ R+ and γi ∈ R+. Let Zv(t)
be a stationary Ornstein-Uhlenbeck process described by
dZv(t) = −αZv(t)dt+dBv(t), with Bv standard Brownian
motion and α > 0. We let u be a random outcome of the
switching process

Uv(t) = µs(t) + γs(t)Z
v(t) (7)

with (µs(t), γs(t)) equal to (µ0, γ0) if s(t) = 0 and to
(µ1, γ1) if s(t) = 1. We further assume that processes Bv

are independent across v. This model describes single-cell
promoter activation as a variable response to the common
environmental stimulus s(t). Depending on absence or
presence of the stimulus, promoter activation fluctuates
around µ0 or µ1, (with standard deviation proportional to
γ0 and γ1, respectively) and is different across cells. For
the purpose of our study, this model provides a convenient,
minimal description of stochastic single-cell response with
nontrivial dynamics. The outcomes of Uv are piecewise
continuous w.p.1. The normalized autocorrelation function
of Uv(t) is ρ(τ) = E[Zv(t)Zv(t + τ)] = exp(−α|τ |)/(2α),
i.e. α defines the “memory” of promoter activation. For
γ0 = γ1 = 0, a deterministic relationship between u(t)
and s(t) of the type of Sec. 2.1 is recovered as a special
case. For γ0 > 0 or γ1 > 0, the interpretation of u as a
function of s holds in a stochastic sense, that is, different
continuous response profiles u may correspond to a same
stimulus s.

In summary, for any v ∈ V let ξv(t) = [Zv(t)T , xv(t)]T =
[Zv(t),mv(t), pv(t)]T . Our gene expression model with
stochastic promoter response is given by the stochastic
differential equation

dξv(t) = F v
(
s(t)

)
ξv(t)dt+ fv

(
s(t)

)
dt+GdBv(t), (8)

with t ≥ tv0, where G = [1, 0, 0]T and

F v
(
s(t)

)
=

 −α 0 0
kvmγs(t) −gvm 0

0 kvp −gvp

 , fv(s(t)) =

[
0

kvmµs(t)
0

]
.



Fig. 2. Example dynamics in one cell v for Short and Long
stimuli (green bands: s(t) = 1), and different memory
α. Green, red, and blue lines: Uv(t), m(t) and p(t);
Black crosses: Y v.

For any (v−, v) ∈ W , we still assume that (2) holds, and
consider a generalization of (3),

ξv(tv0) = Aξξ
v−(tv0) + ηvξ , (9)

with random vectors ηvξ ∼ N (0,Ωξ) independent across
v. The model is illustrated in Fig. 1. Example simulations
from this model are in Fig. 2.

3.2 ARME identification with noisy promoter dynamics

In this section we extend ARME identification to stochas-
tic gene expression dynamics. The randomized iteration
reviewed in Sec. 2.2 is a general method for likelihood
maximization in presence of hidden variables (see Delyon
et al. (1999)). In turn, for a suitable proposal distribution
q, the Metropolis-Hastings implementation of the M-step
is viable as long as (5) can be evaluated. As already
noticed, term p(ϕ|W, θ) is determined by the regression
model (2), which is unchanged. On the contrary, because
of the stochastic dynamics (8), the derivation of (6) no
longer applies. The challenge is therefore the evaluation of
p(Y |ϕ,W, h). Note that measurements yvj ∈ Y now obey

yvj = Cξξ
v(tvj ) + hεvj ,

with Cξ = [0, 0, 1]T . For simplicity, we next drop ϕ, W and
h from the notation.

Let v = 0 be the root of tree W . Let Gk ⊂ V be the nodes
at distance (length of shortest connecting path) k from the
root (i.e. the cells of generation k), in particular,G0 = {0}.
Let P(v) denote the set of nodes in V connecting v to the
root node (the “past” of v), and P(Gk) = {G0 ∪ . . . ∪
Gk−1}. Finally, for any subset S of V , let Y S = {Y v : v ∈
S}. Assume that the tree has m generations (i.e. at least
one node v ∈ V is at distance m from 0 and none is at
distance m+ 1). By the Bayes law, one may write

p(Y ) = p(Y G0) ·
m∏
k=1

p(Y Gk |Y P(Gk)). (10)

This decomposition hints at the evaluation of p(Y ) via a
Kalman filtering-type recursion (Jazwinski, 1970), where
factor p(Y Gk |Y P(Gk)) is determined by the one-step pre-
dictor at iteration k. However, the problem is complicated
by (i) the variable size of Gk over k (for a binary tree, the
size of Gk is 2k−1), and (ii) the stochastic dynamics that
relate measurements Y v of a same cell.

A computational solution to (i) is given by Desbouvries
et al. (2006) for a linear Gaussian model over a tree.
For a similar scenario, an alternative approach built upon
backward filtering from leaves to root is taken by Chou
et al. (1994) (and others, see e.g. Durand et al. (2004)).
Neither of the two approaches addresses point (ii), whereas
both fully account for the correlation among measure-
ments along parallel branches of the tree. Correlation
across parallel branches is originated by the hidden state
dynamics and implies that, at any k, the factorization

p(Y Gk |Y P(Gk)) =
∏
v∈Gk

p(Y v|Y P(v)) (11)

does not hold in general. In the same spirit as Kuz-
manovska et al. (2017), we instead make an approximation,
and take (11) as our working assumption. That is, we make
the hypothesis that the information about Y v contained
in past generations is entirely captured by the direct an-
cestors of v. Whereas the accuracy of the approximation
is a priori unclear, it allows us to greatly simplify the
calculation of (10). This is extremely important because
this calculation enters every sample of a randomized opti-
mization algorithm. The computation goes as follows.

For any k and v ∈ Gk, with a slight abuse of notation, let
Y vP(j) denote the past measurements of cell v at time tj .

That is, for j = 1, . . . , nv, Y
v
P(j) = {yv1 , . . . , yvj−1}. Then

p(Y v|Y P(v)) =

nv∏
j=1

p(yvj |Y vP(j), Y
P(v)). (12)

Since in our assumptions Y and {ξv}v∈V are jointly
Gaussian processes, these conditional probabilities can be

evaluated exactly via a Kalman recursion. Let ξ̂vj|i and Πv
j|i

be the conditional mean and covariance matrix of ξv(tj)

given Y vP(i) and Y P(v). For the relevant indices j from 1

to nv, it holds that

ξ̂vj|j = ξ̂vj|j−1 + Πv
j|j−1C

T
ξ (Λvj )

−1(yvj − ŷvj ),

Πv
j|j = Πv

j|j−1 −Πv
j|j−1C

T
ξ (Λvj )

−1CξΠ
v
j|j−1,

ξ̂vj+1|j = Φv(tvj+1, t
v
j , ξ̂

v
j|j),

Πv
j+1|j = Ψv(tvj+1, t

v
j ,Π

v
j|j),

(13)

where ŷvj = Cξ ξ̂
v
j|j−1 and Λvj = CξΠ

v
j|j−1C

T
ξ + h2 are,

respectively, the conditional mean and covariance matrix
of yvj given Y vP(j) and Y P(v) (Jazwinski, 1970). In turn,

for generic ξ̄, Π̄, τ and t, Φv(τ, t, ξ̄) and Ψv(τ, t, Π̄) are the
solution at τ of

ξ̇(·) = F v
(
s(·)
)
ξ(·) + fv

(
s(·)
)
, ξ(t) = ξ̄,

Π̇(·) = F v
(
s(·)
)
Π(·) + Π(·)F v

(
s(·)
)T

+GGT , Π(t) = Π̄.

The recursion is initialized with

ξ̂v1|0 = Φv(tv1, t
v
0, ξ̂

v
0 ), Πv

1|0 = Ψv(tv1, t
v
0,Π

v
0), (14)

where ξ̂v0 and Πv
0 are the state estimate for cell v at initial

time tv0. If v has a known parent v−, these are inherited

from the latest estimate of the parent state ξv
−

before tv0,

in the light of (9). For J = max{j : tv
−

j ≤ tv0}, one gets

ξ̂v0 = AξΦ
v−(tv0, t

v−

J , ξ̂v
−

J|J),

Πv
0 = AξΨ

v−(tv0, t
v−

J ,Πv−

J|J)ATξ + Ωξ.
(15)



Otherwise, if v = 0 is the root note of W , ξ̂v0 and Πv
0

simply express a Bayes prior on the initial state. Finally,
leveraging this iterative calculation of quantities ŷvj and
Λvj , the factors in (12) may be evaluated as

p(yvj |Y vP(j), Y
P(v)) = fΛv

j
(yvj − ŷvj ) (16)

(recall that fΛv
j

stands for density function of N (0,Λvj )).

In summary, the proposed identification algorithm for the
model of Sec. 3.1 is analogous to the SAEM algorithm
of Sec. 2.2, with the crucial difference that, for putative
parameter values ϕ and h, the likelihood expression (6)
is replaced by the calculation of (10) under approxima-
tion (11). The factors of (11) are calculated iteratively
by propagating the filtering equations (13) and (14)–(15)
from root to leaves of W , evaluating the factors (16)
alongside the filtering iterations, and forming the prod-
ucts (12). Despite the approximation (11), we show in
the next section that the proposed method significantly
outperforms the method of Sec. 2.2 in the case of data
from stochastic promoter activation. Development of an
exact algorithm and comparison of performance with the
current appoximation is instead left for future studies.

4. SIMULATION STUDY

We now discuss performance of identification of the pop-
ulation parameters θ = (A, b,Ω, h) in the case of noisy
promoter activation. To do this we rely on synthetic
datasets generated in accordance with the stochastic pro-
moter model of Sec. 3.1, and run the identification method
developed in Sec. 3.2. To evaluate the importance of ex-
plicitly accounting for stochastic single-cell dynamics in
the identification of θ, on the same datasets, we also run
the original method of Sec. 2.2, which assumes identical
promoter activation for all cells, and compare results. In
the sequel, we refer to the two identification algorithms
as SI (Stochastic model-based Identification) and DI (De-
terministic model-based Identification), respectively. All
algorithms are implemented in Julia.

We consider cells undergoing mitosis, i.e. every cell even-
tually splits into two daughter cells. We consider two types
of datasets corresponding to different structures W of the
observed population. The first type (which we refer to
as “Tree”), is a binary tree spanning 7 generations (both
daughters of every mother cell are kept track of), for a total
of 27−1 = 127 cells. The second type (“Branch”) is a single
branch spanning 127 generations (only one daughter of
every mother cell is kept track of), for the same total of 127
cells. The two types correspond to different experimental
videomicroscopy scenarios (cells in a microfluidic chamber,
as e.g. in Elowitz (2002), and in a “mother machine” as
e.g. in Taheri-Araghi et al. (2015)). Notice that, in the
latter case, the identification method of Sec. 3.2 is exact
since (11) holds without any approximation.

We express time t in minutes. We simulate a population
with cell divisions every 90 minutes and parameters θ fixed
as in Marguet et al. (2019). In particular, A = 0.5I,
exp(b) = [0.294, 0.947, 0.1, 10]T , Ω is non-diagonal and
h = 20 (rate units are minutes−1, concentrations are in
arbitrary units). Measurements are taken every minute.
We assume noiseless state inheritance (i.e. Aξ = 0 and

Fig. 3. Identification statistics in different scenarios for the
entries of θ pertaining gm. Blue: SI; Orange: DI.

Fig. 4. Statistics of the SI iterations over 20 datasets. Black
line: true value; Blue line, band and black envelope
correspond to the size of boxes and whiskers in Fig. 3

Ωξ = 0). For promoter activation we consider four different
scenarios. We consider external perturbation signals s(t)
with a “Short” and “Long” duration of stimuli (8-minute
stimuli every 30 minutes, and 25-minute stimuli every 40
minutes, respectively). For both Short and Long stimuli,
we consider stochastic response with long memory (α =
0.15) and short memory (α = 1.5). Stochastic promoter
response has small mean (µ0 = 0.02) in absence of stimulus
(s(t) = 0), larger mean (µ0 = 1) in presence of stimulus
(s(t) = 1). The values of γ0 and γ1 are fixed depending on
α, such that, for both values of α tested, the (stationary)
standard deviation of Uv is equal to 0.006 when s(t) =
0 and 0.29 when s(t) = 1. Fig. 2 illustrates the four
scenarios.

For each of the four scenarios, we simulate 20 datasets
and run the two identification algorithms on every dataset
(∼1h for a Tree and ∼5h for a Branch on a modern
desktop). We assume A diagonal and, to avoid known
identifiability issues that would blur the analysis (Mar-
guet et al., 2019), we assume that km is given. For the
parameters under estimation, we start the identification
methods from initial guesses off the truth by at least
100% of the true value. Identification results in the form of
statistics over the different simulated datasets are reported
in Fig. 3. Convergence of the iterative SI algorithm is
shown in Fig. 4. For reasons of space, we only report results
for the entries of θ corresponding to parameter gm. These
results are representative of identification performance for
the remaining entries of ϕ (we omit discussion of cross-
correlation terms).



The first observation is that the SI estimates are unbiased.
This is true even for the Tree scenario, where (11) is
indeed an approximation. On the contrary, DI is severely
biased especially in the case of long shocks, where more
noise is brought about by random promoter activation.
In particular, inheritance (term A1,1) is underestimated
while parameter variability (term Σ1,1, as determined from
the estimated A and Ω) and measurement noise strength
(h) are overestimated. Intuitively speaking, DI attributes
randomness across single-cell responses to the modelled
sources of noise, notably noise at division, which results in
reduced ability to detect inheritance.

The second observation concerns the role of the promoter
activation memory. For large α (short memory), the per-
formance gap between DI and SI is less pronounced. This
can be understood in terms of relative time scales: Fast
fluctuations of promoter response relative to the time
scales of the m and p dynamics are averaged away along
time. Conversely, slow fluctuations may result in a drift of
the dynamics of m and p over a whole cell lifespan, with
a similar effect as that of a cell having different kinetic
parameters ϕ. Again, this hampers the ability to estimate
mean and inheritance statistics of ϕ unless promoter fluc-
tuations are explicitly modelled.

An additional observation concerns different experiment
designs. Performance of both DI and SI appears to be the
same in the Tree and the Branch scenarios considered.
With the number of monitored cells and mother-daughter
couples being the same in the two cases, in agreement
with intuition, this hints that the achievable performance
is essentially independent from the number of generations
observed. Thus, for equivalent popoulation size, the most
convenient experimental setup should be chosen based on
other considerations (duration, technical feasibility, prob-
ability of mutations, etc.). Also, this observation suggests
that the approximation that SI rests upon for a Tree has
a rather marginal impact on performance.

In summary, the lack of modelling of random promoter
response in DI leads to identification bias, notably inher-
itance underestimation, especially for long-memory pro-
moter fluctuations and long periods of stochastic response.
Unbiased estimates and better performance overall are
instead obtained with SI, even under the approximate
assumption (11), thanks to the modelling of promoter
noise.

5. CONCLUSION

Starting from previous work on modelling and identifica-
tion of inheritance dynamics for kinetic gene expression
parameters, in this work we extended modelling so as to
include random single-cell response to external stimuli,
and developed the identification approach to take this
noise source into account. We showed via simulation the
performance of the method developed and its ability to
compensate for identification biases that appear if ran-
domness in single-cell response is not accounted for at the
identification stage. Future directions of research include
mathematical analysis of the method, removal of a condi-
tional independence approximation, application to other
dynamical systems with tree-structured dependencies and
to real data.
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